COVER FEATURE

Timothy C.
Lethbridge

University of
Ottawa

What Knowledge
S Important

to a Software
Professional?

Efforts to develop licensing requirements, curricula, or training programs for
software professionals should consider the experience of the practitioners

who actually perform the work.

oftware engineering licensing bodies, uni-

versities designing curricula, companies

focusing on better training for their staff,

and the IEEE in its Software Engineering

Body of Knowledge (SWEBOK) project are
all pursuing efforts to define the subject matter that
software professionals should know. Whereas most
groups are basing their decisions about the software
engineering curriculum on the opinions of experts in
the field, we were more interested in learning what
subject matter practitioners themselves actually find
most important in their work.

From May to October 1998, my colleagues and |
surveyed software professionals representing a wide
variety of industries, job functions, and countries to
learn which educational topics have proved most
important to them in their careers and to identify the
topics for which their education or current knowledge
could be improved. We used the responses to the 75
questions in our survey to develop three sets of data:
the importance of various topics taught in computer
science, software engineering, and computer engi-
neering curricula, the emphasis educational institu-
tions place on these topics, and what practitioners
believe they currently know about the topics.

Our survey reinforces current perceptions about the
importance of some topics, but it also highlights top-
ics that are sometimes underemphasized or overem-
phasized. For example, the survey results indicate that
education programs emphasize mathematics, chem-
istry, and physics more than their importance to prac-
titioners seems to warrant; furthermore, practitioners
tend to forget this material. On the other hand, there

Computer

is a clear knowledge gap and a reliance on on-the-job
learning for topics related to software processes, peo-
ple skills, and human-computer interaction.

The sources of information about the knowledge
that is important to software engineering include the
latest technical literature, existing educational pro-
grams and licensing requirements, and the overviews
of the field that experts are developing.

This survey incorporates significant improvements
in methodology, questions, and sampling compared
to our original survey on the importance of software
engineering topics conducted in 1997.1.2 Additional
data from the current survey has been published else-
where® and is also available at http://www.site.
uottawa.ca/~tcl/edrel/.

The results of this survey should be useful to licens-
ing and accreditation bodies, corporate training
departments, and curriculum designers in universities,
colleges, and training institutes. Students and profes-
sionals seeking continuing education will also be able
to use the data to help select courses.

THE SURVEY

We recruited participants for the survey by directly
approaching companies and by advertising on the
Internet. Most participants used a Web-based form
to complete the survey, although a few used a paper
version. The participants indicated that it took
slightly more than one-half hour to answer all the
questions.

Participants were asked questions about 75 topics
we selected by examining university curricula and the
initial SWEBOK proposals. We listed all the topics

0018-9162/00/$10.00 © 2000 IEEE

found in compulsory courses in various computer sci-
ence, software engineering, and computer engineer-
ing curricula. We also listed the most common types
of elective courses and some material that participants
in earlier surveys recommended that we include. We
did not intend for the list of topics to correspond with
a course list; some topics might only be components of
courses, while others might be spread over many
COUrses.

We tested and revised the survey several times
before starting to gather the 1998 data. To help reduce
bias, we used different versions of the survey, each
with the topics in a different order.

Figure 1 shows the precise wording for the four
questions the participants answered about each topic.
Question 1 asked how much the participants learned
about a topic during their formal education, and
question 2 assessed their level of knowledge at the
present time. The difference between the answers to
these two questions indicates how much participants
have either learned on the job (if positive) or forgot-
ten (if negative).

Question 3 asked how useful the participants have
found the specific details of the material to be in their
careers, and question 4 evaluated the influence of the
material both professionally and personally. We com-
pute a topic’s importance by averaging the responses
to questions 3 and 4.

The participants

We received survey responses from 186 participants
with a wide variety of backgrounds. The sample
appears to provide balanced coverage of a wide spec-
trum of software professionals, with a bias toward
those in North America—and possibly toward those
who were interested enough to take the time to par-
ticipate.

Participants represented 24 countries; 54 percent
were from the US, and 23 percent were from Canada.
Participants work on software in a variety of indus-
tries; only 42 percent indicated that software is their
company’s primary product.

Fifteen percent of the participants had only a high
school or college level education, while 48 percent had
received a bachelor’s degree; the remaining 37 percent
had postgraduate degrees. More than 60 percent of
the participants had degrees in computer science, soft-
ware engineering, or information systems; 50 percent
had degrees in other areas of science and engineering,
while 20 percent had degrees in other disciplines.
These percentages total more than 100 percent
because many participants had degrees in more than
one area.

SURVEY RESULTS
We present the data in two complementary formats:
as categorized lists of topics, and as graphs depicting

mal education (e.g. University or College)?

0 = Learned nothing at all
1 = Became vaguely familiar
2 = Learned the basics

Question 1. How much did you learn about this in your for-

ten?

0 = Know nothing
1 = Am vaguely familiar
2 = Know the basics

Question 2. What is your current knowledge about this, con-
sidering what you have learned on the job as well as forgot-

3 = Became functional (moderate working knowledge)

4 = Learned a lot

5 = Learned in depth; became expert (learned almost every-
thing)

3 = Am functional (moderate working knowledge)
4 =Know a lot
5 = Know in depth/am expert (know almost everything)

Question 3. How useful have the details of this specific mate-
rial been to you in your career as a software developer or soft-
ware manager? Please leave blank if you know little about the
material.

0 = Completely useless

1 = Almost never useful

2 = Occasionally useful

3 = Moderately useful, but perhaps only in certain activities
4 = Very useful

5 = Essential

Question 4. How much influence has learning the material
had on your thinking (your approach to problems and your
general intellectual maturity), whether or not you have directly
used the details of the material? Please consider influence on
both your career and other aspects of your life. Please leave
blank if you know little about the material.

0 = No influence at all

1 = Almost no influence

2 = Occasional influence

3 = Moderate influence in some activities

4 = Significant influence in many activities

5 = Profound influence on almost everything | do

Figure 1. The four questions asked about each of the 75 topics. Keywords were emphasized to ensure that participants noticed them even if they read quickly.

May 2000

the 25 most important and 25 least important topics.
Tables 1 through 3 and Figure 2 show information
about each topic’s importance, the amount learned in
formal education programs, and the amount learned
(or forgotten) subsequent to education. We divided the
topics in the survey into categories to facilitate locat-
ing topics and identifying clusters of topics where the
responses were similar. In Tables 1 through 3, the solid
red square means the topic is in the top quartile for a
data set, while the red half-square means it is in the
bottom quartile. Similarly, the solid blue circle means
it is one of the top four topics, and the blue half-circle
means it is one of the bottom four topics.

Table 1. Core software engineering topics.

Overall importance

The connected line in Figures 2a and 2b indicates
the overall importance of topics. Figure 2a shows that
the respondents consider specific programming lan-
guages to be the most important topic, with data struc-
tures close behind, followed by several other software
design topics. The tables include several clusters of
topics with similar levels of importance. The most sig-
nificant is general software design, followed by soft-
ware engineering methods, software management, and
essential subsystem design.

Table 3 shows that the business, science, and arts
categories include another cluster of important topics.

Top (M) and bottom (=) quartile and top (®) and

bottom (w) four topics, in terms of:

Topic

Learned on the
Overall Learnedin job (or forgotten
importance education since education)

(Q3+Q4) Q1) (Q2-Q1)

Software management

Essential subsystem design

General software design Data structures

Algorithm design

Software design and patterns

Software architecture

Object-oriented concepts and technology
Specific programming languages

Software engineering methods Requirements gathering and analysis

Formal specification methods

Analysis and design methods
Performance measurement and analysis
Testing, verification, and quality assurance
Software reliability and fault tolerance

Maintenance, reengineering, and reverse engineering

Project management

Software metrics

Software cost estimation

Configuration and release management
Process standards such as CMM, 1SO9000

Human-computer interaction/user interfaces
Databases
File management

Specialized application techniques ~ Computational methods for numerical problems

Simulation

Artificial intelligence

Pattern recognition and image processing
Computer graphics

Parsing and compiler design

Information retrieval

Security and cryptography

Computer

Table 2. Scientific topics other than core software engineering.

Top (M) and bottom (=) quartile and top (®)

and bottom (w) four topics, in terms of:

Overall Learned in

importance education since education)

Learned on
the job
(or forgotten

Category Topic (Q3+0Q4) Q1) (Q2-Q1)
Real-time and systems programming Operating systems | |
Systems programming
Data transmission and networks
Parallel and distributed processing
Real-time system design -
Computer hardware Digital electronics and digital logic | -
Microprocessor architecture
Computer system architecture |
Network architecture and data transmission
Telephony and telecommunications -
Other electrical and computer engineering Analog electronics - -
Digital signal processing - -
Data acquisition -
Robotics - -
VLSI L4 -
Computer science theory Programming language theory |
Formal languages | -
Computational complexity and algorithm analysis |
Information theory -
Discrete mathematics Predicate logic = -
Set theory | -
Graph theory - -
Automata theory -
Queuing theory -
Combinatorics - -
Probability and statistics [J -
Linear algebra and matrices ® -
Continuous mathematics Differential and integral calculus - ([-
Differential equations - | -
Control theory - -
Laplace and Fourier transforms - -
Natural science Physics - | -
Chemistry - | -
This cluster includes people skills, technical writing, ics in general software design. Most of the other exten-
and ethics and professionalism, the latter being the sively taught topics are found in Table 2 in the com-
most important nontechnical topic. puter science theory and mathematics categories. The
The least important category is continuous mathe- participants learned the least about software man-
matics, followed by electrical and computer engi- agement, business, and people skills.
neering and natural science. The amount learned data suggests the importance
that educational institutions give to the various topics.
Amount learned in education We can compare this to the participants’ judgments
The responses to Question 1 provide the amount about each topic’s importance to discover topics that
learned in education data. The most extensively taught might be overtaught or undertaught. Making absolute
topic is specific programming languages. Table 1 numerical comparisons between these two scales is
includes this topic in a cluster of heavily taught top- not appropriate because different interpretations are
May 2000

given to points on each scale; nevertheless, we can
compare relative differences.

Clearly, specific programming languages is both the
most important and most learned topic. Tables 1 and
2 show that only a few other topics in the survey—for
example, algorithm design and operating systems—
are high on both scales. Many of the remaining highly
important topics are not extensively taught, and some
unimportant topics are extensively taught. This sug-
gests that the education that today’s computing pro-
fessionals receive may not be entirely appropriate.

We define the educational knowledge gap as the dif-
ference between the amount learned in education and
each topic’s importance. The widest educational
knowledge gaps occur in topics such as configuration
and release management, negotiation, human-com-
puter interaction/user interfaces, and leadership.
Universities might consider increasing their coverage
of such topics; corporate trainers might give new hires
courses on these topics, expecting that they will be
underprepared.

Figure 2b shows that ten topics—including calculus,
differential equations, linear algebra, chemistry, and
physics—have a negative educational knowledge gap,
suggesting that they might be overtaught.

It seems that the overtaught topics either should be
taught less or they should be taught so that the stu-
dents are more likely to remember the material and
perhaps apply it later on. For example, teaching math-

Table 3. Categorized list of business, science, and arts topics.

ematics and physics in conjunction with programming
exercises might be helpful. Another suggestion is to
shift the emphasis in mathematics away from contin-
uous mathematics toward discrete mathematics and
statistics.

Amount learned on the job

The amount learned on the job (or forgotten since
education) is the difference between the responses to
Questions 1 and 2. We can attribute learning since
education—or on-the-job learning—to both training
and experience performing work. Table 1 shows that
the greatest on-the-job learning occurs in the software
process category, especially in configuration and
release management, project management, mainte-
nance and reengineering, and testing, verification, and
quality assurance. Topics with high on-the-job learn-
ing might be targets for new-hire training and
increased university coverage, especially if they also
have a high educational knowledge gap.

The respondents indicated that they have forgotten
the most about theory and mathematics as well as nat-
ural science. This bolsters our argument for reexam-
ining coverage and teaching methods for these topics
to improve the educational investment return.

Amount currently known
For many topics, the amount currently known cor-
relates well with importance, suggesting that practi-

Top (M) and bottom (=) quartile and top (®)
and bottom (w) four topics, in terms of:

Learned on the job

Computer

Overall Learned in (or forgotten
importance education since education)
Topic (Q3+Q4) Q1) (Q2-Q1)
Economics
Accounting -
Marketing -
Management
Entrepreneurship -
Psychology and philosophy Psychology
Philosophy
Ethics and professionalism | |
Technical writing | [|
Giving presentations to an audience | =
Leadership | - [|
Negotiation - |
Second language other than English - -

4.5 O Amount learned in education
| Amount learned since education
4.0 — Amount known now
35 ¢ Importance of topic
. T e
*—o—0o—¢ *—
3.0 e
*—o—o
2.5
2.0
1.5
1.0
0.5
0 N N N S
23 O & 2] o D >) ~ (2 % O ~ ~
S 85868 8555585 S LT FFS55¢8 888858
8o &8 o N .o ISP S - PSS Q FS &
SPF I ITEFIFTLTS ST LEL @ 5 § & & & FLPSFFETY 29388 &858
TS S T LFEE §SS5E @ 8 5 &85 FoI8SEP PSS S
S N < ESIRNGE S (N.Q @ T] > OO LT P 3N I S
5 535S CUSIELE & & 5 & &9 IRPPSES S L99 §&L 9
o{vmgb{ﬂ;o@'e NN NS VNELT O @ o O SES
S P S 78S & 8S§SE¢ & E S £ F TS S L LS 2L
Q > & @ L S & 9K S O S & 5 TS K ~
& 98 ¢ F £ oy s S ¢ MY Lo &o
S < 2 T R v £ 5 5 o g J TE S SL
¢ s © s &S & S £&°
R © ,\qj,'a” & S <
()
5.0
A5 oo O Amount learned in education
’ I Amount learned since education
O — Amount known now
35 @ Amount forgotten since education
. ¢ Importance of topic

Figure 2. The 25 most important topics (a) and the 25 least important topics (b).

tioners eventually learn what is important, but not
necessarily while attending a university or college.

We define the current knowledge gap as the differ-
ence between the importance of a topic and the
amount currently known. Table 4 lists the top 10 top-
ics that have both a relatively large current knowledge
gap and importance above some threshold. Using an
importance threshold of 2.5 (the halfway point on the
scale), the greatest current knowledge gap exists for
topics such as negotiation, human-computer interac-
tion, and leadership. Corporate training departments
should consider giving additional courses to employ-
ees in these topics.

exactly what topics constitute the software

engineering discipline. The “Additional Infor-
mation about Software Engineering Topics™ sidebar
provides a list of some of these efforts.

Some experts contend that software engineers, like
all other engineers, ought to learn about chemistry,
physics, and continuous mathematics. While some
software engineers would benefit from learning this
material, our survey shows that considering these top-
ics to be essential is clearly a mistake.

Because of the low importance and high forgetabil-
ity of continuous mathematics and basic science, uni-

Q variety of research efforts are trying to define

May 2000

Additional Information about
Software Engineering Topics

e The IEEE’s Guide to the Software Engineering

Body of Knowledge (http://www.swebok.org)

outlines and categorizes the SE body of knowledge. The Software
Engineering Coordinating Committee drafted the SWEBOK guide-
lines after consulting a wide variety of sources, including many text-
books as well as experts from industry and academia. This committee
is soliciting feedback from all parties, and they plan to revise the pro-
posal several times during the next few years. The SWEBOK project
also provides good references to related research.

University software engineering curricula are another place to look.
The IEEE Draft Software Engineering Curriculum is an important
example.® The Working Group on Software Engineering Education
has produced an even more extensive set of guidelines for software
engineering programs.?® They categorize topics as core (for example,
requirements, design, project management), foundations (for exam-
ple, computing principles and human-computer interaction), recur-
ring themes (for example, quality, metrics, tools, and ethics), and
supporting topics (for example, mathematics, business, and science).
The Forum for Advancing Software Engineering Education’s elec-
tronic newsletter frequently includes information on SE topics
(http://www.cs.ttu.edu/fase).

References

1.

2.

“Draft Software Engineering Accreditation Criteria,”” Computer, Apr. 1998,
pp. 73-75, 77.

T.B. Hilburn et al., “Software Engineering across Computing Curricula,”
Proc. 3rd Ann. Conf. Integrating Technology into Computer Science Edu-
cation, ACM Press, New York, 1998, pp. 117-121.

. D.J. Bagert et al., Guidelines for Software Engineering Education, tech.

report CMU/SEI-99-TR-032, Carnegie Mellon Univ./Software Eng. Inst.,
1999, http://www.sei.cmu.edu/topics/collaborating/ed/workgroup-ed.html.

Table 4. Topics with the greatest knowledge gap—
where importance most exceeds current knowledge.

Rank Topic

[N

Negotiation

Human-computer interaction/user interfaces
Leadership

Real-time system design

Management

Software cost estimation

Software metrics

Software reliability and fault tolerance
Ethics and professionalism

Requirements gathering and analysis

© 0 N o OB WwN

=
o

versities and colleges should either place less emphasis
on these topics or they should teach them in a way that
makes them more relevant to software engineering stu-
dents. Conversely, the large amount of on-the-job
learning—and greater importance relative to amount
known—suggest that educational institutions should
place considerably more emphasis on teaching topics
such as people skills, software processes, human-com-
puter interaction, real-time system design, and man-
agement.

Our survey indicates that employees are likely to
lack skills and knowledge in areas such as negotia-
tion, leadership, and human-computer interaction.
Therefore, each company might consider conducting
its own version of this survey to discover its particular
needs. [J

Acknowledgments

This research was supported by the Consortium for
Software Engineering Research. The author thanks
the anonymous participants and companies, as well as
others who helped with the research: Nancy Mead,
W. Michael McCracken, Laurie Werth, Lawrence
West, Lesley Beddie, Michael Lutz, Pearl Brereton,
Anatol Kark, and K. Teresa Khidir.

Computer

References

1. T. Lethbridge, “The Relevance of Software Education:
A Survey and Some Recommendations,”” Ann. Software
Eng., Dec. 1998, pp. 91-110.

2. T. Lethbridge, “A Survey of the Relevance of Computer
Science and Software Engineering Education,” Proc.
11th Conf. Software Eng. Education and Training,
CSEE&T 98, IEEE CS Press, Los Alamitos, Calif., 1998,
pp. 56-66.

3. T. Lethbridge, “Priorities for the Education and Train-
ing of Software Engineers,” to be published in J. Systems
Software, 2000.

Timothy C. Lethbridge has been involved in the devel-
opment of undergraduate software engineering pro-
grams at the University of Ottawa. His research interests
include user interfaces, software engineering tools, and
knowledge representation. Lethbridge received a PhD
in computer science from the University of Ottawa. He
is a member of the IEEE, the IEEE Computer Society,
and the ACM. Contact him at tcl@site.uottawa.ca.

E-mail accounts
on overload?

A free e-mail alias from the
Computer Society forwards
all your mail to one place.

you@computer.org

Sign Up Today at
computer.org/WebAccounts/alias.htm

IEEE Computer Society
computer.org

COMPUTER

Innovative technology for computer professionals

