
PRIMES is in P

Manindra Agrawal, Neeraj Kayal and Nitin Saxena∗

Department of Computer Science & Engineering
Indian Institute of Technology Kanpur

Kanpur-208016, INDIA

August 6, 2002

Abstract

We present a deterministic polynomial-time algorithm that determines whether an input number
n is prime or composite.

“The problem of distinguishing prime numbers from composite numbers and of resolving the latter into
their prime factors is known to be one of the most important and useful in arithmetic. It has engaged
the industry and wisdom of ancient and modern geometers to such an extent that it would be superfluous
to discuss the problem at length... Further, the dignity of the science itself seems to require that every
possible means be explored for the solution of a problem so elegant and so celebrated.”

- Karl Friedrich Gauss, Disquisitiones Arithmeticae, 1801 (translation from [Knu98])

1 Introduction

Since ancient times, mathematicians have been fascinated by problems concerning prime numbers. One
of the fundamental problems concerning prime numbers is to determine if a given number is prime. In
modern times, primality testing has also become important from a practical perspective because of its
applications in cryptography.

Starting from ancient Chinese and Greek, many have worked on the problem of finding an efficient
algorithm for testing primality. The Sieve of Eratosthenes (ca. 240 BC) is the most ancient algorithm
that works correctly for all primes, however, its time complexity (= Ω(n) where n is input number) is
exponential in the size of input. In 17th Century, Fermat proved what is referred as Fermat’s Little
Theorem stating that for any prime number p, and any number a not divisible by p, ap−1 = 1 (mod p).
Although the converse of this theorem does not hold (and in fact fails spectacularly for Carmichael
numbers), this result has been the starting point for several efficient primality testing algorithms. In
1976, Miller [Mil76] used this property to obtain a deterministic polynomial-time algorithm for primality
testing assuming Extended Riemann Hypothesis (ERH). His test was modified by Rabin [Rab80] to yield
an unconditional but randomized polynomial-time algorithm. Solovay and Strassen [SS77] obtained
another randomized polynomial-time algorithm using quadratic residues. (Their algorithm can also be
derandomized under ERH). Since then, a number of randomized polynomial-time algorithms have been
proposed for primality testing.

In 1983, Adleman, Pomerance, and Rumely achieved a major breakthrough by giving a deterministic
algorithm for primality that runs in (log n)O(log log logn) time (all the previous deterministic algorithms
required exponential time). In 1986, Goldwasser and Kilian [GK86] proposed a randomized algorithm
based on Elliptic curves running in expected polynomial-time on almost all inputs (all inputs under a
widely believed hypothesis) that produces a certificate for primality (until then, all randomzied algorithms
produced certificates for compositeness only). A similar algorithm was developed by Atkin [Atk86].
Adleman and Huang [AH92] modified Goldwasser-Kilian algorithm to obtain a randomized polynomial-
time algorithm that always produced a certificate for primality.
∗Email addresses: manindra@cse.iitk.ac.in, kayaln@iitk.ac.in, nitinsa@cse.iitk.ac.in

1

The ultimate goal of this line of research is, of course, to obtain an unconditional deterministic
polynomial-time algorithm for primality testing. Despite the impressive progress made in primality
testing so far, this goal has remained elusive. In this paper, we achieve this. We give a deterministic,
Õ((log n)12) time algorithm for testing if a number is prime. Heuristically, our algorithm does much
better: under a widely believed conjecture on the density of Sophie Germain primes (primes p such that
2p+ 1 is also prime), the algorithm takes only Õ((log n)6) steps. The correctness proof of our algorithm
requires only simple tools of algebra (except for appealing to a sieve theory result on the density of primes
p with p− 1 having a large prime factor). In contrast, the correctenss proofs of deterministic algorithms
of [APR83, GK86, Atk86] are much more complex.

In section 2, we summarize the basic idea behind our algorithm. In section 3, we state some preliminary
theorems and fix the notation used here. Thereafter, we state the algorithm in full detail and present the
proof of correctness.

2 Basic Idea and Approach

Our test is based on the following identity for prime numbers. This same identity was basis for a
randomized polynomial-time algorithm in [AB99]:

Identity Suppose that a is coprime to p. Then p is prime if and only if

(x− a)p ≡ (xp − a)(mod p) (1)

Proof. For 0 < i < p, the coefficient of xi in ((x − a)p − (xp − a)) is (−1)i
(
p
i

)
ap−i. Now if p is prime,(

p
i

)
≡ 0(mod p) and hence all the coefficients are zero.

If p is composite: consider a prime q that is a factor of p and let qk||p. Then qk does not divide
(
p
q

)
and

is coprime to ap−q and hence the coefficient of xq is not zero (mod p). Thus ((x− a)p − (xp − a)) is not
identically zero over Fp.

Thus given a p as input, one could pick a polynomial P (x) = x−a and compute whether the congruence
(1) is satisfied or not. However, this takes time Ω(p) because we need to evaluate p coefficients in the LHS
in the worst case. Therefore, to make it feasible we will evaluate both sides of (1) modulo a polynomial
of the form xr − 1. One iteration of our algorithm will consist of evaluating whether the following holds:

(x− a)p ≡ (xp − a)(mod xr − 1, p) (2)

From the Identity it is immediate that all primes p satisfy the above congruence for all values of a and
r; however some composites p may also satisfy (2) for a few values of (a, r). The above congruence takes
O(r2 log3 p) time for verification (lhs is evaluated by repeated squaring), or even better O(r log2 p) if Fast
Fourier Multiplication [Knu98] is used. Our algorithm first chooses a “suitable” r. (An r is “suitable”
for us if it is a prime=O(log6 p) and r− 1 contains a prime factor of size at least r

1
2 +δ, for some constant

δ > 0. [Fou85, BH96] assures us that such a “suitable” r exists.) Thereafter, the algorithm verifies the
congruence (2) for a “small” (O(

√
r log p)) number of a’s. We prove that this idea works: i.e. the

algorithm correctly determines whether p is prime or not.

3 Notation and Preliminaries

This section states some algebraic and number theoretic results which we will be using in the later proofs.
In the rest of the paper Fpd denotes the finite field, where p is a prime. Recall that if p is a prime

and h(x) is a polynomial of degree d and irreducible in Fp, then Fp[x]/(h(x)) is a finite field of order pd.
In the rest of the paper h(x) will be a factor of xr−1

x−1 unless stated otherwise.
We will use the symbol Õ(t(n)) for O(t(n)poly(log t(n))), where t(n) is some function of n. Unless

stated otherwise, log will be to base 2 in this paper.
We now collect some simple facts from algebra that can be found in any standard text, e.g. [LN86,

Fra90]. We also prove some of these for the sake of completeness.

Lemma 3.1. Let p and r be prime numbers, p 6= r.

2

1. The multiplicative group of any field Fpt for t > 0, denoted by F ∗pt is cyclic.

2. Let f(x) be a polynomial with integral coefficients. Then

f(x)p ≡ f(xp) (mod p).

3. Let h(x) be any factor of xr − 1. Let m ≡ mr (mod r). Then

xm ≡ xmr (mod h(x)).

4. Let or(p) be the order of p modulo r. Then in Fp, xr−1
x−1 factorises into irreducible polynomials each

of degree or(p).

Proof. 1. See, e.g., [LN86].

2. Let f(x) = a0 + a1x+ · · ·+ adx
d. The coefficient of xi in f(x)p is∑

i0+···+id=p
i1+2i2+···+did=i

ai00 · · · a
id
d

p!
i0! · · · id!

.

Note that this sum is divisible by p unless one of the ij ’s is p. In the latter case i = pj and the
coefficient of xi is apj = aj . This gives us the required congruence.

3. Let m = kr +mr. Now
xr ≡ 1 (mod xr − 1)

⇒ xkr ≡ 1 (mod xr − 1)
⇒ xkr+mr ≡ xmr (mod xr − 1)
⇒ xm ≡ xmr (mod h(x)).

4. Let d = or(p) and Qr(x) = xr−1
x−1 . Suppose that Qr(x) has an irreducible factor, h(x) in Fp of

degree k. Now Fp[x]/h(x) forms a field of size pk and the multiplicative subgroup of Fp[x]/h(x) is
cyclic with a generator, say g(x). Also, in this galois field, by fact (2) above, we have

g(x)p ≡ g(xp)
⇒ g(x)p

d ≡ g(xp
d

)
⇒ g(x)p

d ≡ g(x) [By fact (3) above]
⇒ g(x)p

d−1 ≡ 1.

Since (pk − 1) is the order of g(x), we get (pk − 1)|(pd − 1) which implies that k|d.

We also have that h(x)|(xr − 1) in Fp and therefore in the field Fp[x]/h(x) we have

xr ≡ 1.

Thus the order of x in this field must be r (since r is prime and x 6≡ 1). Therefore r|(pk − 1), i.e.
pk ≡ 1 (mod r). Hence, d|k. Therefore, k = d, and the lemma follows.

In addition to the above algebraic facts, we will need the following two number theoretic facts.

Lemma 3.2. [Fou85, BH96] Let P (n) denote the greatest prime divisor of n. There exist constants c > 0
and n0 such that, for all x ≥ n0

|{p|p is prime, p ≤ x and P (p− 1) > x
2
3 }| ≥ c x

log x
.

The above lemma is, in fact, known to hold for exponents upto 0.6683 (see [BH96] for a summary of
results of this kind.

Lemma 3.3. [Apo97] Let π(n) be the number of primes ≤ n. Then for n ≥ 1:

n

6 logn
≤ π(n) ≤ 8n

log n
.

3

4 The Algorithm

Input: integer n > 1

1. if (n is of the form ab, b > 1) output COMPOSITE;

2. r = 2;

3. while(r < n) {

4. if (gcd(n,r) 6= 1) output COMPOSITE;

5. if (r is prime)

6. let q be the largest prime factor of r − 1;

7. if (q ≥ 4
√
r log n) and (n

r−1
q 6≡ 1 (mod r))

8. break;

9. r ← r + 1;

10. }

11. for a = 1 to 2
√
r log n

12. if ((x− a)n 6≡ (xn − a) (mod xr − 1, n)) output COMPOSITE;

13. output PRIME;

Theorem 4.1. The algorithm above returns PRIME if and only if n is prime.

In the remainder of the section, we establish this theorem through a sequence of lemmas. First note
that the algorithm has two loops. The first loop tries to find a prime r such that r− 1 has a large prime
factor q ≥ 4

√
r log n, and that q|or(n), where or(n) is the order of n modulo r. Let us first bound the

number of iterations of the while loop after which such an r is found.

Lemma 4.2. There exist positive constants c1 and c2 for which there is a prime r in the interval
[c1(log n)6, c2(log n)6] such that r − 1 has a prime factor q ≥ 4

√
r log n and q|or(n).

Proof. Let c and P (n) be as given in Lemma 3.2. Thus, the number of prime r’s (lets call them special
primes) between c1(log n)6 and c2(log n)6 such that P (r−1) > (c2(log n)6)

2
3 > r

2
3 is (for large enough n)

≥ No of special primes in [1 · · · c2(log n)6]−No of primes in [1 · · · c1(log n)6]

≥ cc2(log n)6

7 log log n
− 8c1(log n)6

6 log log n
(using Lemma 3.3)

=
(log n)6

log log n

(
cc2
7
− 8c1

6

)
.

Choose constants c1 ≥ 46 and c2 so that the quantity in braces is a positive constant, say c3.
Let x = c2(log n)6. Consider the product

Π = (n− 1)(n2 − 1) · · · (nx
1
3 − 1).

This product has atmost x
2
3 log n prime factors. Note that:

x
2
3 log n <

c3(log n)6

log log n
.

Therefore, there is at least one special prime, say r, that does not divide the product Π.
This is the required prime: r − 1 has a large prime factor q ≥ r

2
3 ≥ 4

√
r log n (since c1 ≥ 46), and

q|or(n).

4

Once we know that the while loop halts, we are ready to show:

Lemma 4.3. If n is prime, the algorithm returns PRIME.

Proof. The while loop cannot return COMPOSITE since gcd(n, r) = 1 for all r ≤ c2(log n)6, where c2 is
as in Lemma 4.2. By Lemma 3.1 (fact 2), the for loop also cannot return COMPOSITE. Thus, algorithm
will identify n as PRIME.

Now let us turn our attention to the case where a composite n is input to our algorithm. The
significance of the r found by the while loop arises when n is composite with say pi, 1 ≤ i ≤ k, as its
prime factors. In this case or(n) | lcmi{or(pi)} and hence there exists a prime factor p of n such that
q | or(p), where q is the largest prime factor of r− 1. For the remainder of the argument, let p be such a
prime factor of n.

The second loop of the algorithm uses the value of r obtained to do polynomial computations on
` = 2

√
r log n binomials: (x−a) for 1 ≤ a ≤ `. By Lemma 3.1 (fact 4), we have a polynomial h(x) (factor

of xr − 1) of degree d = or(p) irreducible in Fp. Note that

(x− a)n ≡ (xn − a)(mod xr − 1, n)

implies that
(x− a)n ≡ (xn − a)(mod h(x), p).

So the identities on each binomial hold in the field Fp[x]/(h(x)). The set of ` binomials form a large
cyclic group in this field:

Lemma 4.4. In the field Fp[x]/(h(x)), the group generated by the ` binomials: (x− a), 1 ≤ a ≤ ` i.e,

G = {
∏

1≤a≤`

(x− a)αa |αa ≥ 0,∀ 1 ≤ a ≤ `},

is cyclic and of size >
(
d
`

)`
.

Proof. It is clear that G is a group and since it is a subgroup of the cyclic group (Fp[x]/(h(x)))∗, it is
also cyclic.

Now consider the set

S = {
∏

1≤a≤`

(x− a)αa |
∑

1≤a≤`

αa ≤ d− 1, αa ≥ 0, ∀1 ≤ a ≤ `}.

The following argument shows that all the elements of S are distinct in Fp[x]/(h(x)). The while loop
ensures that once it halts the final r is such that r > q > 4

√
r log n > `. Also step 4 of the algorithm

checks gcd of r and n. If any of the a’s are congruent modulo p, then p < ` < r and thus step 4 of the
algorithm identifies n as composite. Thus, none of the a’s are congruent modulo p. So any two elements
of S are distinct modulo p. This implies that all elements of S are distinct in the field Fp[x]/(h(x)) since
degree of any element of S is less than d—the degree of h(x).

The cardinality of the set S is:(
`+ d− 1

`

)
=

(`+ d− 1)(`+ d− 2) · · · (d)
`!

>

(
d

`

)`
.

Since S is just a subset of G we get the result.

Since d ≥ 2`, size of G is > 2` = n2
√
r. Let g(x) be a generator of G. Clearly, order of g(x) in

Fp[x]/(h(x)) is > n2
√
r. We now define a set related to g(x) which will play an important role in the

remaining arguments. Let

Ig(x) = {m | g(x)m ≡ g(xm)(mod xr − 1, p)}.

Here is a nice property of Ig(x):

5

Lemma 4.5. The set Ig(x) is closed under multiplication.

Proof. Let m1,m2 ∈ Ig(x). So,
g(x)m1 ≡ g(xm1) (mod xr − 1, p),

and
g(x)m2 ≡ g(xm2) (mod xr − 1, p).

Also we have by substituting xm1 in place of x in the second congruence:

g(xm1)m2 ≡ g(xm1m2) (mod xm1r − 1, p)
⇒ g(xm1)m2 ≡ g(xm1m2) (mod xr − 1, p).

From these, we get

g(x)m1m2 ≡ (g(x)m1)m2 (mod xr − 1, p)
≡ g(xm1)m2 (mod xr − 1, p)
≡ g(xm1m2) (mod xr − 1, p).

Hence m1m2 ∈ Ig(x).

Now we prove a property of Ig(x) that plays a crucial role in our proof.

Lemma 4.6. Let the order of g(x) in Fp[x]/(h(x)) be og. Let m1,m2 ∈ Ig(x). Then m1 ≡ m2(mod r)
implies that m1 ≡ m2(mod og).

Proof. Since m1 ≡ m2(mod r), m2 = m1 + kr for some k ≥ 0. Since m2 ∈ Ig(x): (in what follows, the
congruences are in the field Fp[x]/(h(x)) unless indicated otherwise.)

g(x)m2 ≡ g(xm2) (mod xr − 1, p)
⇒ g(x)m2 ≡ g(xm2)
⇒ g(x)m1+kr ≡ g(xm1+kr)
⇒ g(x)m1g(x)kr ≡ g(xm1) [By Lemma 3.1, fact 3]
⇒ g(x)m1g(x)kr ≡ g(x)m1 .

Now g(x) 6≡ 0 implies g(x)m1 6≡ 0 and hence we can cancel g(x)m1 from both sides leaving us with

g(x)kr ≡ 1.

Therefore,
kr ≡ 0 (mod og)

⇒ m2 ≡ m1 (mod og).

The above property implies that there are “very few” (≤ r) numbers in Ig(x) that are less than og.
Now we are ready to prove the most important property of our algorithm.

Lemma 4.7. If n is composite, the algorithm returns COMPOSITE.

Proof. Suppose that the algorithm returns PRIME instead. Thus, the for loop ensures that for all
1 ≤ a ≤ 2

√
r log n,

(x− a)n ≡ (xn − a) (mod xr − 1, p). (3)

Notice that g(x) is just a product of powers of ` binomials (x − a), (1 ≤ a ≤ `) all of which satisfy
equation (3). Thus,

g(x)n ≡ g(xn) (mod xr − 1, p).

Therefore, n ∈ Ig(x). Also, p ∈ Ig(x) by Lemma 3.1, fact 2 and, trivially, 1 ∈ Ig(x). We will now show
that the set Ig(x) has “many” numbers less than og contradicting Lemma 4.6.

Consider the set
E = {nipj | 0 ≤ i, j ≤ b

√
rc}.

6

By Lemma 4.5, E ⊆ Ig(x). Since |E| = (1 + b
√
rc)2 > r, there are two elements ni1pj1 and ni2pj2 in

E with i1 6= i2 or j1 6= j2 such that ni1pj1 ≡ ni2pj2(mod r) by pigeon-hole principle. But then by
Lemma 4.6 we have ni1pj1 ≡ ni2pj2(mod og). This implies

ni1−i2 ≡ pj2−j1(mod og).

Since og ≥ n2
√
r and n|i1−i2|, p|j1−j2| < n

√
r, the above congruence turns into an equality. Since p

is prime, this equality implies n = pk for some k ≥ 1. However, in step 1 of the algorithm, composite
numbers of the form pk for k ≥ 2 are already detected. Therefore, n = p: a contradiction.

This completes the proof of theorem.

5 Time Complexity Analysis

It is straightforward to calculate the time complexity of the algorithm.

Theorem 5.1. The asymptotic time complexity of the algorithm is Õ(log12 n).

Proof. The first step of the algorithm takes asymptotic time: O(log3 n). As noted during the analysis of
the algorithm in the previous section, the while loop makes O(log6 n) iterations.

Let us now measure the work done in one iteration of the while loop. The first step (gcd computation)
takes poly(log log r) asymptotic time. The next two steps would take atmost r

1
2 poly(log log n) time in

the brute-force implementation. The next three steps take atmost poly(log log n) steps. Thus, total
asymptotic time taken by the while loop is Õ(log6 n · r 1

2) = Õ(log9 n).
The for loop does modular computation over polynomials. If repeated-squaring and Fast-Fourier

Multiplication is used then one iteration of this for loop takes Õ(log n ·r log n) steps. Thus, the for loop
takes asymptotic time Õ(r

3
2 log3 n) = Õ(log12 n).

In practice, however, our algorithm is likely to work much faster. The reason is that even though we
only know that there are “many” primes r such that P (r − 1) > r

2
3 , a stronger property is believed to

be true. In fact it is believed that for many primes r, P (r − 1) = r−1
2 . (Such primes are called Sophie

Germain primes.)

Definition 5.2. If both r and r−1
2 are primes, then r−1

2 is a Sophie Germain prime. We will call such
r’s as co-Sophie Germain primes.

The following conjecture gives the density of Sophie Germain primes. This conjecture has been verified
for r ≤ 1010:

Conjecture. [HL22]The number of co-Sophie Germain primes is asymptotic to Dx
log2 x

, where D is the
twin prime constant (estimated by Wrench and others to be approximately 0.6601618...).

If this conjecture is true, then the while loop exits with a “suitable” r of size O(log2 n):

Lemma 5.3. Assuming the conjecture 5, there exists “suitable” r in the range 64 log2 n to c2 log2 n for
all n > n0, where n0 and c2 are positive constants.

Proof. First of all note that if r is prime and q = r−1
2 is a prime, then the only possible orders of n

modulo r are {1, 2, q, 2q = r − 1}. But the order of n modulo r can be 1 or 2 for at most 2 log n primes
r. (This is because (n2 − 1) can have at most log(n2 − 1) prime factors.) Let us leave aside these prime
factors of (n2 − 1) and consider the other co-Sophie Germain primes r for which the order of n modulo
r is at least r−1

2 . We would now like that

r−1
2 ≥ 4

√
r log n

⇒
√
r ≥ 8 logn

⇒ r ≥ 64 log2 n.

Hence we consider the range 64 log2 n to c2 log2 n and we show that choosing c2 large enough, we find at
least one desired r in this range. By the conjecture 5, there are Dc2 log2 n

log2(c2 log2 n)
co-Sophie-Germain primes

7

less than c2 log2 n. Out of these, at most D64 log2 n
log2(64 log2 n)

are less than 64 log2 n (again by the conjecture).
From the remaining ones, there are at most 2 log n primes for which order of n modulo r is 1 or 2. Thus
we will choose c2 such that

Dc2 log2 n
log2(c2 log2 n)

> D64 log2 n
log2(64 log2 n)

+ 2 logn

or, c2 log2 n
(log log n)2 > 100 log2 n

(log log n)2 [for large enough n]
or, c2 > 100 [for large enough n].

This immediately leads us to a heuristic time complexity of Õ(r
1
2 (log n)2) (for while loop) + Õ(r

3
2 (log n)3)

(for for loop) = Õ(log6 n) for our algorithm.

6 Future Work and Improvements

In our algorithm, the for loop needs to run for 1 ≤ a ≤ 2
√
r log n in order to ensure that the size of the

group G referred to in Lemma 4.4 is large enough (> n2
√
r). The upper limit for a could be improved if

we can show that a still smaller set of (x− a)’s generates a group of the required size. This seems very
likely.

We can further improve the complexity to Õ(log3 n) if we can prove the following conjecture given
in [BP01] and verified for r ≤ 100 and n ≤ 1010 in [KS02]:

Conjecture. If r does not divide n and if

(x− 1)n ≡ (xn − 1)(mod xr − 1, n), (4)

then either n is prime or n2 ≡ 1(mod r).

If this conjecture is true, we can modify the algorithm slightly to first search for an r which does not
divide n2 − 1. Such an r can assuredly be found in the range [2, 4 logn]. This is because the product of
prime numbers less than x is at least ex (see [Apo97]). Thereafter we can test whether the congruence
(4) holds or not. Verifying congruence (4) takes time Õ(r(log2 n)) using FFT for multiplication. This
would give us a time complexity of Õ(log3 n).

Acknowledgements

We thank Rajat Bhattacharjee for useful discussions. We thank Erich Bach, Abhijit Das, G. Harman,
Roger Heath-Brown, H. W. Lenstra, Pieter Moree, Richard Pinch, and Carl Pomerance for providing us
with useful references. We thank Shafi Goldwasser and Erich Bach for pointing out incorrect citations in
an earlier draft.

References

[AB99] M. Agrawal and S. Biswas. Primality and identity testing via chinese remaindering. In Pro-
ceedings of Annual IEEE Symposium on Foundations of Computer Science, pages 202–209,
1999.

[AH92] L. M. Adleman and M.-D. Huang. Primality testing and two dimensional Abelian varieties over
finite fields. Lecture Notes in Mathematics, 1512, 1992.

[Apo97] T. M. Apostol. Introduction to Analytic Number Theory. Springer-Verlag, 1997.

[APR83] L. M. Adleman, C. Pomerance, and R. S. Rumely. On distinguishing prime numbers from
composite numbers. Ann. Math., 117:173–206, 1983.

[Atk86] A. O. L. Atkin. Lecture notes of a conference, boulder (colorado). Manuscript, August 1986.

8

[BH96] R. C. Baker and G. Harman. The Brun-Titchmarsh Theorem on average. In Proceedings of a
conference in Honor of Heini Halberstam, Volume 1, pages 39–103, 1996.

[BP01] Rajat Bhattacharjee and Prashant Pandey. Primality testing. Technical report, IIT Kanpur,
2001. Available at http://www.cse.iitk.ac.in/research/btp2001/primality.html.

[Fou85] E. Fouvry. Theoreme de Brun-Titchmarsh; application au theoreme de Fermat. Invent. Math.,
79:383–407, 1985.

[Fra90] J. B. Fraleigh. A First Course in Abstract Algebra. Narosa, 1990.

[GK86] S. Goldwasser and J Kilian. Almost all primes can be quickly certified. In Proceedings of Annual
IEEE Symposium on Foundations of Computer Science, pages 316–329, 1986.

[HL22] G. H. Hardy and J. E. Littlewood. Some problems of ‘Partitio Numerorum’ III: On the expres-
sion of a number as a sum of primes. Acta Mathematica, 44:1–70, 1922.

[Knu98] D. E. Knuth. The Art of Computer Programming, Vol II, Seminumerical Algorithms. Addison
Wesley, 1998.

[KS02] Neeraj Kayal and Nitin Saxena. Towards a deterministic polynomial-time test. Technical report,
IIT Kanpur, 2002. Available at http://www.cse.iitk.ac.in/research/btp2002/primality.html.

[LN86] R. Lidl and H. Niederreiter. Introduction to finite fields and their applications. Cambridge
University Press, 1986.

[Mil76] G. L. Miller. Riemann’s hypothesis and tests for primality. J. Comput. Sys. Sci., 13:300–317,
1976.

[Rab80] M. O. Rabin. Probabilistic algorithm for testing primality. J. Number Theory, 12:128–138,
1980.

[SS77] R. Solovay and V. Strassen. A fast Monte-Carlo test for primality. SIAM Journal on Computing,
6:84–86, 1977.

9

